SHARE

SPACE .eu

Funded by the European Union

S H A R E S P A C E .eu

Embodied Social Experiences in Hybrid Shared Spaces

HORIZON-CL4-2022-HUMAN-01-14

2023-2025

Funded by the European Union

CONTENT

What is ShareSpace? What do we do? Why is it important?

- 1. European Context
- 2. The Science
- 3. Project implementation
- 4. Proofs-of-Principle
- 5. Three scenarios
- 6. Next activities

SHARE SPACE .eu

CALL: HORIZON-CL4-2022-HUMAN-01-14

HUMAN-CENTRED AND ETHICAL DEVELOPMENT OF DIGITAL AND INDUSTRIAL TECHNOLOGIES 2022 (HORIZON-CL4-2022-HUMAN-01) Extended Reality Technologies (XR)

Expected Outcome: Proposals are expected to contribute to the following outcomes: Innovative eXtended Reality industrial and **societal applications**, integrating technologies such as advanced visualisation, 3D, Augmented and Virtual Reality experiences, human-machine interaction and cooperation, with a focus on well designed and fully tested scenarios in real-world environment.

Research & Innovation Action (RIA)

ShareSpace: 14 partners + 2 affiliated partners

8 EU countries

36 months (kick off January 2023)

6,437,000€

European context

What is XR

It is the umbrella term used for Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), as well as future realities immersive technologies might create. XR covers the full spectrum of real and virtual environments.

SHARE

Shaping Europe's digital future Home Policies Activities News Library Funding Calendar

Home > Policies > Extended Reality

A EURO pean Ecosystem: The European Commission is supporting research and innovation into a European XR ecosystem ensuring that our European values are upheld. The European Commission is encouraging cross-fertilisation between disciplines and domains.

XR applications are used in sectors such as manufacturing and construction, cultural heritage, tourism, training and education, **HEALTH**, advertisement, work processes, industrial processes, but also for entertainment, online commerce and construction. The European Commission Green Deal is another potential use area for XR applications with future virtual spaces for people to meet and work in a climate neutral society.

User experience with XR technology is becoming more and more immersive. Apart from re-creating realistic virtual environments, the current work involves improving the user experience even further by adding emotion, language technologies and better speech recognition, as well as human senses like smells and touch.

Virtual universes

A metaverse is a computer-generated universe with online 3D virtual environments in which the user can **MOVE** freely. It could be a **DIGITAL** world based on the real Earth, as well as a fictional environment where users can game, go shopping for virtual products and services or meet with other users through avatars in **MOTION**.

In such computerised virtual environments, European core values are crucial for the take-up of the technology, including equality, non-discrimination and inclusion.

EXTENDED REALITY: OPPORTUNITIES, SUCCESS STORIES AND CHALLENGES (HEALTH, EDUCATION)

Final report

Prepared by Visionary Analytics in partnership with IDEA Consult (Ella Desmedt, Steven Knotter), Carl Boel, Kim Dekeyser, Fien Depaepe, Luis Quintero, Tom Van Daele, Brenda Wiederhold September - 2022

Figure 1. Applications of XR technologies in the health sector

XR applications in health

Applications to be used by medical professionals and students

Surgery:

Preoperative planning (creating an optimal surgery design in 3D)
Intraoperative navigation (visualising patient's anatomy in real time)
Telepresence (remote guidance for medical staff)

Analysis and diagnosis:

Detection of diseases via 3D images
Detection of disorders by observing patients in VR environments

Learning in healthcare:

• Training for medical staff and students (e.g. emergency situations, surgery simulations, human anatomy in 3D) Applications to be used by patients or the general population

Patient and caregiver education:

- Visualisation of medical procedures
- Simulating the experience of having a certain health condition

Pain management:

- Distraction and entertainment via immersive experiences
- Focus shifting by engaging patient in specific tasks
- •Skill building by helping patients regulate their response to pain

Treatment & therapies for patients with mental health problems or disorders:

- Cognitive behavioural therapy (mostly exposure therapy, but also psychoeducation, problem-solving)
- Virtual self-counselling
- Embodiment (e.g. to treat eating disorders)

Rehabilitation and cognitive enhancement:

- Cognitive rehabilitation to improve memory (e.g. for dementia patients)
- Neurological and functional recovery (e.g. improving motor and language skills after a stroke)
- Sustaining attention of persons with learning difficulties

Assistance for people with physical disabilities:

- · Aid for visually impaired people
- · Aid for hearing impaired people
- Aid for people with mobility challenges

Improving well-being and promoting healthy lifestyles:

- Improving psychological and emotional well-being
- Encouraging physical activity

Embodied Social Experiences in Hybrid Shared Spaces

The vision of SHARESPACE is the creation of future Social Hybrid Spaces (SHS) shared by humans (5-7) and avatars (2-3) engaged in embodied collaborative tasks, where social sensorimotor primitives are transparently captured through mobile connected innovative sensors, and then reconstructed using novel extended reality (XR) technology. Our ambition is to **create a** hybrid, multimodal-multisensory integrated platform which adapts to individual users and enables them to interact in an embodied shared space by learning, identifying, and reconstructing the core sensorimotor primitives of social interactions.

Our vision

#	Participant organisation name	Country	Туре
1	DFKI – German Research Centre For Artificial Intelligence	Germany	RES
2	UM - University of Montpellier, EuroMov DHM (+ IMT Mines Ales)	France	RES
3	CRdC - CRdC Nuove Tecnologie per le Attività Produttive Scarl	Italy	RES
4	UKE - University Medical Center Hamburg-Eppendorf	Germany	RES
5	ALE - Alcatel-Lucent Enterprise	France	IND
6	<u>UJI</u> - Universitat Jaume I De Castellon	Spain	RES
7	<u>Golaem</u> - Golaem S.A.	France	SME
8	LST - LightSpace Technologies SIA	Latvia	SME
9	<u>CYENS</u> - Center of Excellence	Cyprus	RES
10	<u>Ricoh</u> - Ricoh Europe	Germany	IND
11	DMU - De Montfort University	United Kingdom	RES
12	<u>INRIA</u> - Institut national de recherche en sciences et technologies du numérique (+ University Rennes 2)	France	RES
13	AE, Ars Electronica Linz GmbH & Co KG	Austria	RES
14	VHIR - Hospital Vall d'Hebron	Spain	RES

Example of sensorimotor primitive

Kinematic intersection information

Extended (by Becchio and Panzeri) to kinematics

Compute how and much information encoded in movement kinematics is actually read out by human perceivers

✓ Based on the trivariate relationship between kinematics, the actual internal state and the inferred internal state

- ✓ Based on observation of kinematics, encoded and perceived internal states
- ✓ Primary purpose: understand computations made by perceivers on kinematics
- ✓ Lead to design interventions on kinematics that can causally manipulate transmission of kinematic information

Kinematic encoding of intention information

Grasp for an object with different intentions

Identical physical constraints of reaching (e.g., initial arm configuration, size, shape and location of the bottle)

Variations in movement kinematics can be taken to reflect intention

Kinematic readout of intention information

False Positive Rate

0.8

0.5

Model performance

fraction of intention choices correctly predicted by the model

Amplification

HARE

The features that matter for social transmission are those at the intersection of kinematic encoding and readout of information

Track movement kinematics and extract kinematic variables

- **Kinematic variables**
 - Wrist velocity
- Wrist height
- Wrist horizontal trajectory
- Grip aperture
- ...

Use the kinematic intersection information approach to identify features at the intersection of encoding and readout (i.e. features relevant for social transmission)

Reconstruct movement kinematics in XR amplifying features at the intersection of encoding and readout

Synchronisation, Social Connectedness & Pain

Synchronization metrics

Individual Sync Index

$$\rho_k := |\bar{\phi}'_k| \quad \in [0,1]$$

Group Sync Index

Dyadic Sync Index

$$p_{d_{h,k}} := \left| \frac{1}{T} \int_0^T e^{\{j\phi_{d_{h,k}}(t)\}} dt \right| \simeq \left| \frac{1}{N_T} \sum_{i=1}^{N_T} e^{\{j\phi_{d_{h,k}}(t_i)\}} \right| \in [0,1]$$

Model

Network of heterogeneousKuramoto oscillators

$$\dot{\theta}_k = \omega_k + \frac{c}{N} \sum_{h=1}^N a_{kh} \sin(\theta_h - \theta_k), \qquad k = 1, 2, \dots, N$$

- N = 7
- c = constant
- A_{kh} = 0 or 1

Alderisio et al., 2017; Bardy et al., 2020; Calabrese et al., 2021

Workplan

WP8 Project Management

Dissemination, Community Building, IPR, Exploitation

UM+IMT: Benoît, Ludovic, Christophe, Simon, Patrice 1 post-doc (2 or 3 years) – Marta 1 post-doc (2 years) – Summer-fall 2023

The ShareSpace Glossary

The ETHICAL Ethics in XR Authenticity Plausibility Transparency Humanistic principles (freedom of speech/expression, movement, autonomy, right to privacy) The SOCIAL **Social Shared Space in XR**

- VR-AR-XR
- L0-L1-L2-L3
- Virtual group Hybrid group

Embodied Social Information in XR

- Motion primitives / Sensorimotor primitives
- Kinematic coding: Information encoding/Specification
- Kinematic coding: Information readout/detection
- Intersection information
- Amplification/Attenuation
- Multisensory perception
- Synchronization
- Inter-agent topology

Embodied Social Propagation in XR

- Information transmission
- Empathy
- Mimicry
- Affiliation
- Connectedness
- Bounding
- Cohesion
- Contagion
- Leadership

Social and Biological Presence in XR

- Self-identity
- xBodiment
- Sense of agency
- Embodied intentionality
- Extended motivation
- Technostress
- Cybersickness
- Fatigue
- Addiction
- Demographics
- UX in Social Hybrid Space ?

- **Capturing & Processing in XR**
 - Ego-centric visual-inertial tracking
 - Multi-sensor multi-person localization and pose estimation
 - Multimodal-multisensory system perception
 - Representation for motion encoding / decoding
 - Scene scanning and representation
 - RGB spherical(360°) camera plus imaging
 - Time-of-Flight RGBD (depth)
 - 3D digitization
 - Recording alignment
 - Eve-tracking
 - Fisheye image
 - Occlusion

Point cloud

XR System Architecture

- Platform initialization
- Distributed space synchronization (clocking) .
- WebRTC sensorimotor channel
- Multi-modal multi-sensory real-time processing
- Multi-modal multi-sensory lossless transportation

Cognitive Architecture in XR

- Feedback control strategy
- Motor signal synchronization (*to differentiate with inter-agent sync/coordination***)
- Virtual humans' levels of autonomy (L1, L2, L3)
- Autonomous Virtual Character perception

Rendering in XR

- Scene neural rendering
- Virtual human animation and style
 - Evetracking and audio to facial expression mapping

The PHYSICAL

- Hyper-realistic representation
- Posture/ human modelling
- Biomechanics/kinematics
- Virtual human post-synchronization

The CULTURAL

Health in XR	Sport in XR	Art in XR	
 Social exercises 	 Performance 	 Cultural embodiment 	
 Kinesiophobia 	 Wellbeing 	 Artistic expression 	
 Pain modulation 	 Retention 	 Artistic remote participation 	
 Patient empowerment 	 Transfer 	 Collaborative aesthetics 	
 Virtual Pills 	• xx	• xx	

Levels of autonomy in human-agent interaction

Local Spaces

Proofs of Principle PoPs

- Kinematic Chinese Whispers
- Social Connectedness

PoPs

- SHARE -

SPACE .eu

KINEMATIC CHINESE WHISPERS - AMPLIFICIATION

SHARESPACE Interactions

What information?

1)Fear in object passing

2)Ratio of distance to width in a movement sequence (Fitts' Law)

Transmission of Fear Information

p001

SHARE

LSPACEJ.eu

SOCIAL CONNECTEDNESS - PROPAGATION

PHASE I

SYNC UP ESTABLISH SYNC – CONNECT ONE ORGANISM

INDUCE FEAR in n=2 (0 and 2)

MOTOR CONTAGION

OBSERVE MOTOR CONTAGION in 1 and 3 and 4

Requirements

- Oscillatory motion
 - 1D/2D
- Degrees of freedom /proximal
 - Naturalistic
 - HELLO TOGETHER/ LOOPS

Pain x Sync x Endorphines

PHASE II

SYNC UP ESTABLISH SYNC – CONNECT ONE ORGANISM

INDUCE FEAR in n=2 (0 and 2)

MOTOR CONTAGION

OBSERVE MOTOR CONTAGION in 1 and 3 and 4

AMPLIFY

FEAR = slow down, exaggerate slow down of L2 of P0 and P2 so group syncs up to L2s of P0 and P2 (for L0-L2 mapping 1:1 motion physical to SHS) "I am ok, they wait for me, sync – less pain"

ATTENUATE

 FEAR = slow down, dampen the lack of speed of L0 for L2 of P0 and P2, by speeding up of L2

"I am slow, they do not know, I seem ok - sync maintained"

SHARE

LSPACE .eu

SHARESPACE FOR HEALTH, SPORT AND ART

Sharespace for Health - Social low-back pain exergame

Simplified visualisation of the Low Back Pain Scenario showing (top) group exercises in VR with L0 patients and their L1 avatars, and (bottom) the AR-version with (L0) patients at two different locations, L1 avatars of other patients, and the L3 autonomous avatar of the therapist.

Target: 2024 and 2025 World Pain Conference

ShareSpace for sport - Family peloton cycling

SHS - VR Virtual Space

Sara is an autonomous avatar (L3)

Melinda bikes in a real environment equipped with SHS AR glasses (L0)

SHS - AR

Sara is an autonomous avatar (L3)

Peter joins Melinda from home using a VR HMD (L1)

Target: Paris 2024 & Tour de France 2025

Two phases of the Sport scenario showing (top) L0 amateur cyclists learning how to ride in a virtual peloton composed of their own (L1) avatars guided by an autonomous L3 avatar, and (bottom) "on-road" (Melinda) and "at-home" (Peter) cyclists sharing the hybrid space composed, for at-home cyclists, of their own (L1) avatars guided by Melinda and L2-L3 avatars.

Feb 2023

Breaking down the peloton cycling scenario

Performance context

ShareSpace for Art – Shared Creativity

Artistic production in the Deep Space 8k at Ars Electronica Festival and scenario illustration with L0 humans (white) human-driven L1 (yellow), semi-autonomous L2 (pink) and fully autonomous L3 (green avatars)

Target: Ars Electronica Festival 2024 & 2025

Thank you !