Sonification & speech: Recent research on auditory feedback based on human movement

Benjamin O'Brien, Ph.D http://benjaminobrien.net

Outline

- Introduction
- Sonification * Cycling
- Pathological Speech Applications
 - Spectrotemporal modulation
 - Hypoxic modeling
- Reflections

Introduction : Who am I?

with Big Band du CNRS, Marseille (2022)

WIRGINIA BA Mathematics (2006)
MILLS MA Composition (2009)
PhD Composition (2015)
(Aix-Marseille M2MPI – acoustics (2017)
MILLS M2MPI – acoustics (2017)
Post-doctorate (2017-2019)
Post-doctorate (2020-2022)

PAROLE ET

Post-doctorate (2022-Present)

Introduction: Example

Relationship between movement and sound

Introduction: Natural & artificial auditory feedback

"Sound provides information about an interaction of materials at a location in an environment" – Gaver (1993)

Natural

- Wind (mistral!)
- Cicadae
- Speech*

Artificial

- Transportation
- Thermal
- Medical

Introduction: Artificial "sonification"

"...rendering sound in response to data" – Hermann et al. (2011)

Comparison with visual feedback

 Sound is more temporally accurate than vision (Hirsh & Watson, 1996; Murgia et al., 2017)

- Less consuming on attentional resources
- Portable with the use of modern technology (Secoli et al., 2011)

Introduction: Sonification studies

Outside & ...

- Auditory cues effective in informing spatio-temporal aspects in drawing tasks (Thoret et al., 2014; 2016)
- Kinematic sonification during learning of new **handwriting** task improved speed & fluency of new skill (Danna et al., 2014)

... inside sports domain

- Listening to acoustic recording of best hammer throw performance enhanced performance (Agostini et al., 2004)
- 4-D sonification enhanced motor learning of **rowing motion** skill (Effenberg et al., 2016)

Sonification: Pedaling gesture

Sonification: Previous development

Goal: Can sonification be used to enhance performance? (Vidal et al., 2019)

Method

100Nm

50Nm

H

• Torque efficiency (TE) $TE = 100 * \frac{\tau^+}{\tau^+ + \tau^-}$

Participants

- 12 experts; 16 naïve
- Different display conditions

PRISM

DES SCIENCES ETIENNE DU MOUVEMENT JULES TechnoSport

Results

Sonification of **stereo** most **efficient**

cnrs

Aix*Marseille

Sonification: Effects on performance

Goal: Effects of sonification on kinematic activities & muscular activations <u>https://www.youtube.com/watch?v=65QHzRo74Bo</u>

Methods

Н

- Torque efficiency (TE)
- Joint kinematics
- Muscular activations (RL only)

20" sonif

40" no sonif

Aix*Marseille

Participants

- 8 experts
- 4 sessions (6 min):
 - Silence
 - Left
 - Right
 - Stereo

Experimental setup

1' warm up 1' cool down

cnrs

SATT

DES SCIENCES ETIEN

Sonification: Results

universite

TE

1

Kinematic

Muscular

Are these limitations or adaptations?

/ MARE

11

Sonification: Application

1

headphones

phone (mount)

■ (0) ◄

10:38 | 0,0 Ko/s 🕸

Speech: Signal analysis

Aix*Marseille

Cnrs

Speech signals **transmit** a wealth of information pertaining to speakers, including *physiological* and cultural markers (Schweinberg et al., 2014; Benzeghiba et al., 2007)

Perceptual

- Intelligibility
- Prosody \rightarrow emotion
- Speech rate

A

Acoustic

- F0 & formants
- MFCC
- Modulation

13

Speech: Pathological speech \rightarrow STM (1/2)

Problem Metrics used by clinicians to evaluate speech impairment \rightarrow time consuming

Goal Identify acoustic correlates \rightarrow potential for automation

Corpus 3 datasets^{*} \rightarrow 1 training; 2 testing (HNC, Park)

Vowel quality metrics

* see bib for details

spectrotemporal modulation domain

<figure>

spectrotemporal modulation extraction:

apply FFT to spectrogram to transfer time-frequency to modulation domain

Temporal modulations (x-axis) Prosody (1-2Hz) Syllabic (4-8 Hz) Articulation (16-32Hz)

Spectral modulations (y-axis) Vowels (0-3 cyc/octave) Perceptual threshold

Speech: Pathological speech \rightarrow STM (2/2)

EFA TM (8-32 Hz) and SM (0.5-4 cyc/oct) correlates to vowel quality metrics (train dataset)

Results TM strong discriminate for HNC; not Park

Reflections TM \rightarrow speech form; SM \rightarrow physiological

CrossMark ¢ritik for updates

Correlates of vowel clarity in the spectrotemporal modulation domain: Application to speech impairment evaluation

Anna Marczyk, ^{1,4)} ⁽⁵⁾ Benjamin O'Brien, ¹ Pascale Tremblay, ^{2,b)} Virginie Woisard, ^{3,c)} and Alain Ghio¹ ¹Aix-Marseille Université, CNRS, LPL, UMR 7309, Aix-en-Provence, France ²Universite Laval, Faculte de Medecine, Departement de Readaptation, Quebec City, Quebec GIV 0A6, Canada ³Service ORL, CHU Larrey, Toulouse, France

Model	AUC of ROC		Accuracy		Sensitivity		Specificity		Balanced Accuracy	
	М	F	М	F	М	F	М	F	М	F
MPS-based model	0.95	0.98	0.91	0.91	0.98	0.97	0.6	0.77	0.79	0.87
MPS-based vowel model	0.93	0.96	0.89	0.87	0.98	0.97	0.5	0.61	0.74	0.79
TM Vowel Index model	0.87	0.91	0.91	0.85	1	0.97	0.5	0.54	0.75	0.75
SM Vowel Index model	0.68	0.69	0.76	0.62	0.8	0.62	0.5	0.61	0.65	0.61

Speech: Pathological speech \rightarrow Hypoxia (1/2)

Problem Hypoxia detection \rightarrow slurred speech \rightarrow impaired psycho-motor skills

Goal Examine effects of speech on acoustic, physio "hypoxic" features

Corpus Collected at EUROMOV in 2020 \rightarrow Fresnel et al. 2021

Features

Acoustic: 19 MFCC, Δ , $\Delta\Delta$

Nirs: HB tot, rSaO2

ECG: Q, R, S, T, RR-int

hypoxia: lack of oxygenation that generally occurs at high altitudes

Speech: Pathological speech \rightarrow Hypoxia (2/2)

VAD Segment into non-/speech (Speech Brain)

SLDA Identify physiological features sensitive to hypoxia

Train/Evaluate models with training dataset (SVM \rightarrow 4-fold)

Reflections train (see fig); test: ~72% accuracy (a+p model) physio > acoustic acoustic \rightarrow info about speaker \rightarrow personalize?

Feature	Statistic	Wilks' Lambda	F	p
RR-interval	Median	0.70	191.55	***
rSaO ₂	Median	0.65	37.21	***
R peak	Mean	0.63	12.70	***
Q peak	Median	0.6	20.82	***
S peak	Median	0.59	9.37	**
Q peak	Std. Dev	0.58	9.00	**

Differentiating acoustic and physiological features in speech for hypoxia Submitted to Benjamin O'Brien¹, Adrien Gresse², Jean-Baphiter Hund², Guilhem Belda², Jean-François Bonastre¹, Concepting C

training 5 km sea-level 100 100 90 90 accuracy (%) accuracy (%) 80 80 70 70 60 60 50 50 combined physiological combined physiological acoustic

Closing thoughts

Sonification

- * personalized sonification based on physiology, perceptual capacities
- * multimodal
- * learning, improving, rehabilitation

Speech

- \ast speech pathology \rightarrow linked to physiological features
- * spectrotemporal modulation \rightarrow associated with (in)voluntary movement
- * hypoxia \rightarrow physio > BUT speech may provide information about speaker

Sonification & speech: Recent research on auditory feedback based on human movement

Benjamin O'Brien, Ph.D http://benjaminobrien.net

BONUS: STM \rightarrow Laughter

Question Acoustic differences between child/parent and parent/adult dyad when producing (non-)mimicking laughter?

STM Used to distinguish speech, laughter, and speech laughter (Ludusuan & Wagner, 2020) GAMMs model variance over spectrum \rightarrow opposed to fixed value

Bonus: Golf putting (1)

Experimental Brain Research (2020) 238:883-895 https://doi.org/10.1007/s00221-020-05757-3

RESEARCH ARTICLE

Online sonification for golf putting gesture: reduced variability of motor behaviour and perceptual judgement

Goal: Effects of online sonification of golf putting gesture on behavioral and perceptual performance with novices

Method:

- a. Develop 24 real-time sonifications based on club head speed:
 - 2 synthesizers * 2 modalities * 2 gains * 3 mappings
- b. limit vision at impact
- c. 5 sessions of 25 trials (random), target 3.5 m

	Brightness	Rhythmicity
Whoosh		
Jet		

Relationship between performance & **movement variability?**

RESEARCH QUARTERLY FOR EXERCISE AND SPORT https://doi.org/10.1080/02701367.2020.1726859

Check for updat

Sonification of Golf Putting Gesture Reduces Swing Movement Variability in Novices

Benjamin O'Brien (), Brett Juhas, Marta Bieńkiewicz (), Frank Buloup, Lionel Bringoux (), and Christophe Bourdin ()

Study Question: Effect of auditory guidance, feedback on performance & movement variability **Method:**

- a. Develop mean velocity profile (MVP), error
- b. Develop auditory conditions

Control: Pink noise

1)

Auditory guidance $MVP \rightarrow Frequency$

Auditory feedback Error \rightarrow Pan MVP signal

Auditory feedback Error \rightarrow Modulate MVP signal

Speech: Corpus

passage lu "La bise et le soleil" ou "La chèvre de M. Seguin" 'segmenté et étiqueté phonétiquement

Québec singing corpus – training corpus, Tremblay et al, 2018

N=146, ages between 20 & 89 years (mean 53.89 ± 19.82), 43% F, 49% singers

C2Si (head-neck cancer) - validation corpus, Woisard et al., 2020

N=127 Patients (67%) : ages between 36 & 87 years (mean 60 \pm 13), 45% F Control: ages between 30 & 77 years (mean 65 \pm 9), 61% F

AHN PARK (Dysarthric Parkisons) - validation corpus, Ghio et al., 2018

N=316 Patients (65%) : ages between 29 & 85 years (mean 66.51 \pm 9.63), 33% F Control: ages between 38 &87 years (mean 62.68 \pm 11.06), 49% F

